libstdc++
stl_multimap.h
Go to the documentation of this file.
00001 // Multimap implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001-2017 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 3, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // Under Section 7 of GPL version 3, you are granted additional
00017 // permissions described in the GCC Runtime Library Exception, version
00018 // 3.1, as published by the Free Software Foundation.
00019 
00020 // You should have received a copy of the GNU General Public License and
00021 // a copy of the GCC Runtime Library Exception along with this program;
00022 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00023 // <http://www.gnu.org/licenses/>.
00024 
00025 /*
00026  *
00027  * Copyright (c) 1994
00028  * Hewlett-Packard Company
00029  *
00030  * Permission to use, copy, modify, distribute and sell this software
00031  * and its documentation for any purpose is hereby granted without fee,
00032  * provided that the above copyright notice appear in all copies and
00033  * that both that copyright notice and this permission notice appear
00034  * in supporting documentation.  Hewlett-Packard Company makes no
00035  * representations about the suitability of this software for any
00036  * purpose.  It is provided "as is" without express or implied warranty.
00037  *
00038  *
00039  * Copyright (c) 1996,1997
00040  * Silicon Graphics Computer Systems, Inc.
00041  *
00042  * Permission to use, copy, modify, distribute and sell this software
00043  * and its documentation for any purpose is hereby granted without fee,
00044  * provided that the above copyright notice appear in all copies and
00045  * that both that copyright notice and this permission notice appear
00046  * in supporting documentation.  Silicon Graphics makes no
00047  * representations about the suitability of this software for any
00048  * purpose.  It is provided "as is" without express or implied warranty.
00049  */
00050 
00051 /** @file bits/stl_multimap.h
00052  *  This is an internal header file, included by other library headers.
00053  *  Do not attempt to use it directly. @headername{map}
00054  */
00055 
00056 #ifndef _STL_MULTIMAP_H
00057 #define _STL_MULTIMAP_H 1
00058 
00059 #include <bits/concept_check.h>
00060 #if __cplusplus >= 201103L
00061 #include <initializer_list>
00062 #endif
00063 
00064 namespace std _GLIBCXX_VISIBILITY(default)
00065 {
00066 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
00067 
00068   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
00069     class map;
00070 
00071   /**
00072    *  @brief A standard container made up of (key,value) pairs, which can be
00073    *  retrieved based on a key, in logarithmic time.
00074    *
00075    *  @ingroup associative_containers
00076    *
00077    *  @tparam _Key  Type of key objects.
00078    *  @tparam  _Tp  Type of mapped objects.
00079    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
00080    *  @tparam _Alloc  Allocator type, defaults to
00081    *                  allocator<pair<const _Key, _Tp>.
00082    *
00083    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00084    *  <a href="tables.html#66">reversible container</a>, and an
00085    *  <a href="tables.html#69">associative container</a> (using equivalent
00086    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
00087    *  is T, and the value_type is std::pair<const Key,T>.
00088    *
00089    *  Multimaps support bidirectional iterators.
00090    *
00091    *  The private tree data is declared exactly the same way for map and
00092    *  multimap; the distinction is made entirely in how the tree functions are
00093    *  called (*_unique versus *_equal, same as the standard).
00094   */
00095   template <typename _Key, typename _Tp,
00096             typename _Compare = std::less<_Key>,
00097             typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
00098     class multimap
00099     {
00100     public:
00101       typedef _Key                                      key_type;
00102       typedef _Tp                                       mapped_type;
00103       typedef std::pair<const _Key, _Tp>                value_type;
00104       typedef _Compare                                  key_compare;
00105       typedef _Alloc                                    allocator_type;
00106 
00107     private:
00108 #ifdef _GLIBCXX_CONCEPT_CHECKS
00109       // concept requirements
00110       typedef typename _Alloc::value_type               _Alloc_value_type;
00111 # if __cplusplus < 201103L
00112       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
00113 # endif
00114       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
00115                                 _BinaryFunctionConcept)
00116       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
00117 #endif
00118 
00119     public:
00120       class value_compare
00121       : public std::binary_function<value_type, value_type, bool>
00122       {
00123         friend class multimap<_Key, _Tp, _Compare, _Alloc>;
00124       protected:
00125         _Compare comp;
00126 
00127         value_compare(_Compare __c)
00128         : comp(__c) { }
00129 
00130       public:
00131         bool operator()(const value_type& __x, const value_type& __y) const
00132         { return comp(__x.first, __y.first); }
00133       };
00134 
00135     private:
00136       /// This turns a red-black tree into a [multi]map.
00137       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
00138         rebind<value_type>::other _Pair_alloc_type;
00139 
00140       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
00141                        key_compare, _Pair_alloc_type> _Rep_type;
00142       /// The actual tree structure.
00143       _Rep_type _M_t;
00144 
00145       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
00146 
00147     public:
00148       // many of these are specified differently in ISO, but the following are
00149       // "functionally equivalent"
00150       typedef typename _Alloc_traits::pointer            pointer;
00151       typedef typename _Alloc_traits::const_pointer      const_pointer;
00152       typedef typename _Alloc_traits::reference          reference;
00153       typedef typename _Alloc_traits::const_reference    const_reference;
00154       typedef typename _Rep_type::iterator               iterator;
00155       typedef typename _Rep_type::const_iterator         const_iterator;
00156       typedef typename _Rep_type::size_type              size_type;
00157       typedef typename _Rep_type::difference_type        difference_type;
00158       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
00159       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
00160 
00161 #if __cplusplus > 201402L
00162       using node_type = typename _Rep_type::node_type;
00163 #endif
00164 
00165       // [23.3.2] construct/copy/destroy
00166       // (get_allocator() is also listed in this section)
00167 
00168       /**
00169        *  @brief  Default constructor creates no elements.
00170        */
00171 #if __cplusplus < 201103L
00172       multimap() : _M_t() { }
00173 #else
00174       multimap() = default;
00175 #endif
00176 
00177       /**
00178        *  @brief  Creates a %multimap with no elements.
00179        *  @param  __comp  A comparison object.
00180        *  @param  __a  An allocator object.
00181        */
00182       explicit
00183       multimap(const _Compare& __comp,
00184                const allocator_type& __a = allocator_type())
00185       : _M_t(__comp, _Pair_alloc_type(__a)) { }
00186 
00187       /**
00188        *  @brief  %Multimap copy constructor.
00189        *
00190        *  Whether the allocator is copied depends on the allocator traits.
00191        */
00192 #if __cplusplus < 201103L
00193       multimap(const multimap& __x)
00194       : _M_t(__x._M_t) { }
00195 #else
00196       multimap(const multimap&) = default;
00197 
00198       /**
00199        *  @brief  %Multimap move constructor.
00200        *
00201        *  The newly-created %multimap contains the exact contents of the
00202        *  moved instance. The moved instance is a valid, but unspecified
00203        *  %multimap.
00204        */
00205       multimap(multimap&&) = default;
00206 
00207       /**
00208        *  @brief  Builds a %multimap from an initializer_list.
00209        *  @param  __l  An initializer_list.
00210        *  @param  __comp  A comparison functor.
00211        *  @param  __a  An allocator object.
00212        *
00213        *  Create a %multimap consisting of copies of the elements from
00214        *  the initializer_list.  This is linear in N if the list is already
00215        *  sorted, and NlogN otherwise (where N is @a __l.size()).
00216        */
00217       multimap(initializer_list<value_type> __l,
00218                const _Compare& __comp = _Compare(),
00219                const allocator_type& __a = allocator_type())
00220       : _M_t(__comp, _Pair_alloc_type(__a))
00221       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
00222 
00223       /// Allocator-extended default constructor.
00224       explicit
00225       multimap(const allocator_type& __a)
00226       : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
00227 
00228       /// Allocator-extended copy constructor.
00229       multimap(const multimap& __m, const allocator_type& __a)
00230       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
00231 
00232       /// Allocator-extended move constructor.
00233       multimap(multimap&& __m, const allocator_type& __a)
00234       noexcept(is_nothrow_copy_constructible<_Compare>::value
00235                && _Alloc_traits::_S_always_equal())
00236       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
00237 
00238       /// Allocator-extended initialier-list constructor.
00239       multimap(initializer_list<value_type> __l, const allocator_type& __a)
00240       : _M_t(_Compare(), _Pair_alloc_type(__a))
00241       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
00242 
00243       /// Allocator-extended range constructor.
00244       template<typename _InputIterator>
00245         multimap(_InputIterator __first, _InputIterator __last,
00246                  const allocator_type& __a)
00247         : _M_t(_Compare(), _Pair_alloc_type(__a))
00248         { _M_t._M_insert_equal(__first, __last); }
00249 #endif
00250 
00251       /**
00252        *  @brief  Builds a %multimap from a range.
00253        *  @param  __first  An input iterator.
00254        *  @param  __last  An input iterator.
00255        *
00256        *  Create a %multimap consisting of copies of the elements from
00257        *  [__first,__last).  This is linear in N if the range is already sorted,
00258        *  and NlogN otherwise (where N is distance(__first,__last)).
00259        */
00260       template<typename _InputIterator>
00261         multimap(_InputIterator __first, _InputIterator __last)
00262         : _M_t()
00263         { _M_t._M_insert_equal(__first, __last); }
00264 
00265       /**
00266        *  @brief  Builds a %multimap from a range.
00267        *  @param  __first  An input iterator.
00268        *  @param  __last  An input iterator.
00269        *  @param  __comp  A comparison functor.
00270        *  @param  __a  An allocator object.
00271        *
00272        *  Create a %multimap consisting of copies of the elements from
00273        *  [__first,__last).  This is linear in N if the range is already sorted,
00274        *  and NlogN otherwise (where N is distance(__first,__last)).
00275        */
00276       template<typename _InputIterator>
00277         multimap(_InputIterator __first, _InputIterator __last,
00278                  const _Compare& __comp,
00279                  const allocator_type& __a = allocator_type())
00280         : _M_t(__comp, _Pair_alloc_type(__a))
00281         { _M_t._M_insert_equal(__first, __last); }
00282 
00283 #if __cplusplus >= 201103L
00284       /**
00285        *  The dtor only erases the elements, and note that if the elements
00286        *  themselves are pointers, the pointed-to memory is not touched in any
00287        *  way. Managing the pointer is the user's responsibility.
00288        */
00289       ~multimap() = default;
00290 #endif
00291 
00292       /**
00293        *  @brief  %Multimap assignment operator.
00294        *
00295        *  Whether the allocator is copied depends on the allocator traits.
00296        */
00297 #if __cplusplus < 201103L
00298       multimap&
00299       operator=(const multimap& __x)
00300       {
00301         _M_t = __x._M_t;
00302         return *this;
00303       }
00304 #else
00305       multimap&
00306       operator=(const multimap&) = default;
00307 
00308       /// Move assignment operator.
00309       multimap&
00310       operator=(multimap&&) = default;
00311 
00312       /**
00313        *  @brief  %Multimap list assignment operator.
00314        *  @param  __l  An initializer_list.
00315        *
00316        *  This function fills a %multimap with copies of the elements
00317        *  in the initializer list @a __l.
00318        *
00319        *  Note that the assignment completely changes the %multimap and
00320        *  that the resulting %multimap's size is the same as the number
00321        *  of elements assigned.
00322        */
00323       multimap&
00324       operator=(initializer_list<value_type> __l)
00325       {
00326         _M_t._M_assign_equal(__l.begin(), __l.end());
00327         return *this;
00328       }
00329 #endif
00330 
00331       /// Get a copy of the memory allocation object.
00332       allocator_type
00333       get_allocator() const _GLIBCXX_NOEXCEPT
00334       { return allocator_type(_M_t.get_allocator()); }
00335 
00336       // iterators
00337       /**
00338        *  Returns a read/write iterator that points to the first pair in the
00339        *  %multimap.  Iteration is done in ascending order according to the
00340        *  keys.
00341        */
00342       iterator
00343       begin() _GLIBCXX_NOEXCEPT
00344       { return _M_t.begin(); }
00345 
00346       /**
00347        *  Returns a read-only (constant) iterator that points to the first pair
00348        *  in the %multimap.  Iteration is done in ascending order according to
00349        *  the keys.
00350        */
00351       const_iterator
00352       begin() const _GLIBCXX_NOEXCEPT
00353       { return _M_t.begin(); }
00354 
00355       /**
00356        *  Returns a read/write iterator that points one past the last pair in
00357        *  the %multimap.  Iteration is done in ascending order according to the
00358        *  keys.
00359        */
00360       iterator
00361       end() _GLIBCXX_NOEXCEPT
00362       { return _M_t.end(); }
00363 
00364       /**
00365        *  Returns a read-only (constant) iterator that points one past the last
00366        *  pair in the %multimap.  Iteration is done in ascending order according
00367        *  to the keys.
00368        */
00369       const_iterator
00370       end() const _GLIBCXX_NOEXCEPT
00371       { return _M_t.end(); }
00372 
00373       /**
00374        *  Returns a read/write reverse iterator that points to the last pair in
00375        *  the %multimap.  Iteration is done in descending order according to the
00376        *  keys.
00377        */
00378       reverse_iterator
00379       rbegin() _GLIBCXX_NOEXCEPT
00380       { return _M_t.rbegin(); }
00381 
00382       /**
00383        *  Returns a read-only (constant) reverse iterator that points to the
00384        *  last pair in the %multimap.  Iteration is done in descending order
00385        *  according to the keys.
00386        */
00387       const_reverse_iterator
00388       rbegin() const _GLIBCXX_NOEXCEPT
00389       { return _M_t.rbegin(); }
00390 
00391       /**
00392        *  Returns a read/write reverse iterator that points to one before the
00393        *  first pair in the %multimap.  Iteration is done in descending order
00394        *  according to the keys.
00395        */
00396       reverse_iterator
00397       rend() _GLIBCXX_NOEXCEPT
00398       { return _M_t.rend(); }
00399 
00400       /**
00401        *  Returns a read-only (constant) reverse iterator that points to one
00402        *  before the first pair in the %multimap.  Iteration is done in
00403        *  descending order according to the keys.
00404        */
00405       const_reverse_iterator
00406       rend() const _GLIBCXX_NOEXCEPT
00407       { return _M_t.rend(); }
00408 
00409 #if __cplusplus >= 201103L
00410       /**
00411        *  Returns a read-only (constant) iterator that points to the first pair
00412        *  in the %multimap.  Iteration is done in ascending order according to
00413        *  the keys.
00414        */
00415       const_iterator
00416       cbegin() const noexcept
00417       { return _M_t.begin(); }
00418 
00419       /**
00420        *  Returns a read-only (constant) iterator that points one past the last
00421        *  pair in the %multimap.  Iteration is done in ascending order according
00422        *  to the keys.
00423        */
00424       const_iterator
00425       cend() const noexcept
00426       { return _M_t.end(); }
00427 
00428       /**
00429        *  Returns a read-only (constant) reverse iterator that points to the
00430        *  last pair in the %multimap.  Iteration is done in descending order
00431        *  according to the keys.
00432        */
00433       const_reverse_iterator
00434       crbegin() const noexcept
00435       { return _M_t.rbegin(); }
00436 
00437       /**
00438        *  Returns a read-only (constant) reverse iterator that points to one
00439        *  before the first pair in the %multimap.  Iteration is done in
00440        *  descending order according to the keys.
00441        */
00442       const_reverse_iterator
00443       crend() const noexcept
00444       { return _M_t.rend(); }
00445 #endif
00446 
00447       // capacity
00448       /** Returns true if the %multimap is empty.  */
00449       bool
00450       empty() const _GLIBCXX_NOEXCEPT
00451       { return _M_t.empty(); }
00452 
00453       /** Returns the size of the %multimap.  */
00454       size_type
00455       size() const _GLIBCXX_NOEXCEPT
00456       { return _M_t.size(); }
00457 
00458       /** Returns the maximum size of the %multimap.  */
00459       size_type
00460       max_size() const _GLIBCXX_NOEXCEPT
00461       { return _M_t.max_size(); }
00462 
00463       // modifiers
00464 #if __cplusplus >= 201103L
00465       /**
00466        *  @brief Build and insert a std::pair into the %multimap.
00467        *
00468        *  @param __args  Arguments used to generate a new pair instance (see
00469        *                std::piecewise_contruct for passing arguments to each
00470        *                part of the pair constructor).
00471        *
00472        *  @return An iterator that points to the inserted (key,value) pair.
00473        *
00474        *  This function builds and inserts a (key, value) %pair into the
00475        *  %multimap.
00476        *  Contrary to a std::map the %multimap does not rely on unique keys and
00477        *  thus multiple pairs with the same key can be inserted.
00478        *
00479        *  Insertion requires logarithmic time.
00480        */
00481       template<typename... _Args>
00482         iterator
00483         emplace(_Args&&... __args)
00484         { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
00485 
00486       /**
00487        *  @brief Builds and inserts a std::pair into the %multimap.
00488        *
00489        *  @param  __pos  An iterator that serves as a hint as to where the pair
00490        *                should be inserted.
00491        *  @param  __args  Arguments used to generate a new pair instance (see
00492        *                 std::piecewise_contruct for passing arguments to each
00493        *                 part of the pair constructor).
00494        *  @return An iterator that points to the inserted (key,value) pair.
00495        *
00496        *  This function inserts a (key, value) pair into the %multimap.
00497        *  Contrary to a std::map the %multimap does not rely on unique keys and
00498        *  thus multiple pairs with the same key can be inserted.
00499        *  Note that the first parameter is only a hint and can potentially
00500        *  improve the performance of the insertion process.  A bad hint would
00501        *  cause no gains in efficiency.
00502        *
00503        *  For more on @a hinting, see:
00504        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
00505        *
00506        *  Insertion requires logarithmic time (if the hint is not taken).
00507        */
00508       template<typename... _Args>
00509         iterator
00510         emplace_hint(const_iterator __pos, _Args&&... __args)
00511         {
00512           return _M_t._M_emplace_hint_equal(__pos,
00513                                             std::forward<_Args>(__args)...);
00514         }
00515 #endif
00516 
00517       /**
00518        *  @brief Inserts a std::pair into the %multimap.
00519        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
00520        *             of pairs).
00521        *  @return An iterator that points to the inserted (key,value) pair.
00522        *
00523        *  This function inserts a (key, value) pair into the %multimap.
00524        *  Contrary to a std::map the %multimap does not rely on unique keys and
00525        *  thus multiple pairs with the same key can be inserted.
00526        *
00527        *  Insertion requires logarithmic time.
00528        *  @{
00529        */
00530       iterator
00531       insert(const value_type& __x)
00532       { return _M_t._M_insert_equal(__x); }
00533 
00534 #if __cplusplus >= 201103L
00535       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00536       // 2354. Unnecessary copying when inserting into maps with braced-init
00537       iterator
00538       insert(value_type&& __x)
00539       { return _M_t._M_insert_equal(std::move(__x)); }
00540 
00541       template<typename _Pair, typename = typename
00542                std::enable_if<std::is_constructible<value_type,
00543                                                     _Pair&&>::value>::type>
00544         iterator
00545         insert(_Pair&& __x)
00546         { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); }
00547 #endif
00548       // @}
00549 
00550       /**
00551        *  @brief Inserts a std::pair into the %multimap.
00552        *  @param  __position  An iterator that serves as a hint as to where the
00553        *                      pair should be inserted.
00554        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
00555        *               of pairs).
00556        *  @return An iterator that points to the inserted (key,value) pair.
00557        *
00558        *  This function inserts a (key, value) pair into the %multimap.
00559        *  Contrary to a std::map the %multimap does not rely on unique keys and
00560        *  thus multiple pairs with the same key can be inserted.
00561        *  Note that the first parameter is only a hint and can potentially
00562        *  improve the performance of the insertion process.  A bad hint would
00563        *  cause no gains in efficiency.
00564        *
00565        *  For more on @a hinting, see:
00566        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
00567        *
00568        *  Insertion requires logarithmic time (if the hint is not taken).
00569        * @{
00570        */
00571       iterator
00572 #if __cplusplus >= 201103L
00573       insert(const_iterator __position, const value_type& __x)
00574 #else
00575       insert(iterator __position, const value_type& __x)
00576 #endif
00577       { return _M_t._M_insert_equal_(__position, __x); }
00578 
00579 #if __cplusplus >= 201103L
00580       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00581       // 2354. Unnecessary copying when inserting into maps with braced-init
00582       iterator
00583       insert(const_iterator __position, value_type&& __x)
00584       { return _M_t._M_insert_equal_(__position, std::move(__x)); }
00585 
00586       template<typename _Pair, typename = typename
00587                std::enable_if<std::is_constructible<value_type,
00588                                                     _Pair&&>::value>::type>
00589         iterator
00590         insert(const_iterator __position, _Pair&& __x)
00591         { return _M_t._M_insert_equal_(__position,
00592                                        std::forward<_Pair>(__x)); }
00593 #endif
00594       // @}
00595 
00596       /**
00597        *  @brief A template function that attempts to insert a range
00598        *  of elements.
00599        *  @param  __first  Iterator pointing to the start of the range to be
00600        *                   inserted.
00601        *  @param  __last  Iterator pointing to the end of the range.
00602        *
00603        *  Complexity similar to that of the range constructor.
00604        */
00605       template<typename _InputIterator>
00606         void
00607         insert(_InputIterator __first, _InputIterator __last)
00608         { _M_t._M_insert_equal(__first, __last); }
00609 
00610 #if __cplusplus >= 201103L
00611       /**
00612        *  @brief Attempts to insert a list of std::pairs into the %multimap.
00613        *  @param  __l  A std::initializer_list<value_type> of pairs to be
00614        *               inserted.
00615        *
00616        *  Complexity similar to that of the range constructor.
00617        */
00618       void
00619       insert(initializer_list<value_type> __l)
00620       { this->insert(__l.begin(), __l.end()); }
00621 #endif
00622 
00623 #if __cplusplus > 201402L
00624       /// Extract a node.
00625       node_type
00626       extract(const_iterator __pos)
00627       {
00628         __glibcxx_assert(__pos != end());
00629         return _M_t.extract(__pos);
00630       }
00631 
00632       /// Extract a node.
00633       node_type
00634       extract(const key_type& __x)
00635       { return _M_t.extract(__x); }
00636 
00637       /// Re-insert an extracted node.
00638       iterator
00639       insert(node_type&& __nh)
00640       { return _M_t._M_reinsert_node_equal(std::move(__nh)); }
00641 
00642       /// Re-insert an extracted node.
00643       iterator
00644       insert(const_iterator __hint, node_type&& __nh)
00645       { return _M_t._M_reinsert_node_hint_equal(__hint, std::move(__nh)); }
00646 
00647       template<typename, typename>
00648         friend class _Rb_tree_merge_helper;
00649 
00650       template<typename _C2>
00651         void
00652         merge(multimap<_Key, _Tp, _C2, _Alloc>& __source)
00653         {
00654           using _Merge_helper = _Rb_tree_merge_helper<multimap, _C2>;
00655           _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
00656         }
00657 
00658       template<typename _C2>
00659         void
00660         merge(multimap<_Key, _Tp, _C2, _Alloc>&& __source)
00661         { merge(__source); }
00662 
00663       template<typename _C2>
00664         void
00665         merge(map<_Key, _Tp, _C2, _Alloc>& __source)
00666         {
00667           using _Merge_helper = _Rb_tree_merge_helper<multimap, _C2>;
00668           _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
00669         }
00670 
00671       template<typename _C2>
00672         void
00673         merge(map<_Key, _Tp, _C2, _Alloc>&& __source)
00674         { merge(__source); }
00675 #endif // C++17
00676 
00677 #if __cplusplus >= 201103L
00678       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00679       // DR 130. Associative erase should return an iterator.
00680       /**
00681        *  @brief Erases an element from a %multimap.
00682        *  @param  __position  An iterator pointing to the element to be erased.
00683        *  @return An iterator pointing to the element immediately following
00684        *          @a position prior to the element being erased. If no such
00685        *          element exists, end() is returned.
00686        *
00687        *  This function erases an element, pointed to by the given iterator,
00688        *  from a %multimap.  Note that this function only erases the element,
00689        *  and that if the element is itself a pointer, the pointed-to memory is
00690        *  not touched in any way.  Managing the pointer is the user's
00691        *  responsibility.
00692        *
00693        * @{
00694        */
00695       iterator
00696       erase(const_iterator __position)
00697       { return _M_t.erase(__position); }
00698 
00699       // LWG 2059.
00700       _GLIBCXX_ABI_TAG_CXX11
00701       iterator
00702       erase(iterator __position)
00703       { return _M_t.erase(__position); }
00704       // @}
00705 #else
00706       /**
00707        *  @brief Erases an element from a %multimap.
00708        *  @param  __position  An iterator pointing to the element to be erased.
00709        *
00710        *  This function erases an element, pointed to by the given iterator,
00711        *  from a %multimap.  Note that this function only erases the element,
00712        *  and that if the element is itself a pointer, the pointed-to memory is
00713        *  not touched in any way.  Managing the pointer is the user's
00714        *  responsibility.
00715        */
00716       void
00717       erase(iterator __position)
00718       { _M_t.erase(__position); }
00719 #endif
00720 
00721       /**
00722        *  @brief Erases elements according to the provided key.
00723        *  @param  __x  Key of element to be erased.
00724        *  @return  The number of elements erased.
00725        *
00726        *  This function erases all elements located by the given key from a
00727        *  %multimap.
00728        *  Note that this function only erases the element, and that if
00729        *  the element is itself a pointer, the pointed-to memory is not touched
00730        *  in any way.  Managing the pointer is the user's responsibility.
00731        */
00732       size_type
00733       erase(const key_type& __x)
00734       { return _M_t.erase(__x); }
00735 
00736 #if __cplusplus >= 201103L
00737       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00738       // DR 130. Associative erase should return an iterator.
00739       /**
00740        *  @brief Erases a [first,last) range of elements from a %multimap.
00741        *  @param  __first  Iterator pointing to the start of the range to be
00742        *                   erased.
00743        *  @param __last Iterator pointing to the end of the range to be
00744        *                erased .
00745        *  @return The iterator @a __last.
00746        *
00747        *  This function erases a sequence of elements from a %multimap.
00748        *  Note that this function only erases the elements, and that if
00749        *  the elements themselves are pointers, the pointed-to memory is not
00750        *  touched in any way.  Managing the pointer is the user's
00751        *  responsibility.
00752        */
00753       iterator
00754       erase(const_iterator __first, const_iterator __last)
00755       { return _M_t.erase(__first, __last); }
00756 #else
00757       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00758       // DR 130. Associative erase should return an iterator.
00759       /**
00760        *  @brief Erases a [first,last) range of elements from a %multimap.
00761        *  @param  __first  Iterator pointing to the start of the range to be
00762        *                 erased.
00763        *  @param __last Iterator pointing to the end of the range to
00764        *                be erased.
00765        *
00766        *  This function erases a sequence of elements from a %multimap.
00767        *  Note that this function only erases the elements, and that if
00768        *  the elements themselves are pointers, the pointed-to memory is not
00769        *  touched in any way.  Managing the pointer is the user's
00770        *  responsibility.
00771        */
00772       void
00773       erase(iterator __first, iterator __last)
00774       { _M_t.erase(__first, __last); }
00775 #endif
00776 
00777       /**
00778        *  @brief  Swaps data with another %multimap.
00779        *  @param  __x  A %multimap of the same element and allocator types.
00780        *
00781        *  This exchanges the elements between two multimaps in constant time.
00782        *  (It is only swapping a pointer, an integer, and an instance of
00783        *  the @c Compare type (which itself is often stateless and empty), so it
00784        *  should be quite fast.)
00785        *  Note that the global std::swap() function is specialized such that
00786        *  std::swap(m1,m2) will feed to this function.
00787        *
00788        *  Whether the allocators are swapped depends on the allocator traits.
00789        */
00790       void
00791       swap(multimap& __x)
00792       _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
00793       { _M_t.swap(__x._M_t); }
00794 
00795       /**
00796        *  Erases all elements in a %multimap.  Note that this function only
00797        *  erases the elements, and that if the elements themselves are pointers,
00798        *  the pointed-to memory is not touched in any way.  Managing the pointer
00799        *  is the user's responsibility.
00800        */
00801       void
00802       clear() _GLIBCXX_NOEXCEPT
00803       { _M_t.clear(); }
00804 
00805       // observers
00806       /**
00807        *  Returns the key comparison object out of which the %multimap
00808        *  was constructed.
00809        */
00810       key_compare
00811       key_comp() const
00812       { return _M_t.key_comp(); }
00813 
00814       /**
00815        *  Returns a value comparison object, built from the key comparison
00816        *  object out of which the %multimap was constructed.
00817        */
00818       value_compare
00819       value_comp() const
00820       { return value_compare(_M_t.key_comp()); }
00821 
00822       // multimap operations
00823 
00824       //@{
00825       /**
00826        *  @brief Tries to locate an element in a %multimap.
00827        *  @param  __x  Key of (key, value) pair to be located.
00828        *  @return  Iterator pointing to sought-after element,
00829        *           or end() if not found.
00830        *
00831        *  This function takes a key and tries to locate the element with which
00832        *  the key matches.  If successful the function returns an iterator
00833        *  pointing to the sought after %pair.  If unsuccessful it returns the
00834        *  past-the-end ( @c end() ) iterator.
00835        */
00836       iterator
00837       find(const key_type& __x)
00838       { return _M_t.find(__x); }
00839 
00840 #if __cplusplus > 201103L
00841       template<typename _Kt>
00842         auto
00843         find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
00844         { return _M_t._M_find_tr(__x); }
00845 #endif
00846       //@}
00847 
00848       //@{
00849       /**
00850        *  @brief Tries to locate an element in a %multimap.
00851        *  @param  __x  Key of (key, value) pair to be located.
00852        *  @return  Read-only (constant) iterator pointing to sought-after
00853        *           element, or end() if not found.
00854        *
00855        *  This function takes a key and tries to locate the element with which
00856        *  the key matches.  If successful the function returns a constant
00857        *  iterator pointing to the sought after %pair.  If unsuccessful it
00858        *  returns the past-the-end ( @c end() ) iterator.
00859        */
00860       const_iterator
00861       find(const key_type& __x) const
00862       { return _M_t.find(__x); }
00863 
00864 #if __cplusplus > 201103L
00865       template<typename _Kt>
00866         auto
00867         find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
00868         { return _M_t._M_find_tr(__x); }
00869 #endif
00870       //@}
00871 
00872       //@{
00873       /**
00874        *  @brief Finds the number of elements with given key.
00875        *  @param  __x  Key of (key, value) pairs to be located.
00876        *  @return Number of elements with specified key.
00877        */
00878       size_type
00879       count(const key_type& __x) const
00880       { return _M_t.count(__x); }
00881 
00882 #if __cplusplus > 201103L
00883       template<typename _Kt>
00884         auto
00885         count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
00886         { return _M_t._M_count_tr(__x); }
00887 #endif
00888       //@}
00889 
00890       //@{
00891       /**
00892        *  @brief Finds the beginning of a subsequence matching given key.
00893        *  @param  __x  Key of (key, value) pair to be located.
00894        *  @return  Iterator pointing to first element equal to or greater
00895        *           than key, or end().
00896        *
00897        *  This function returns the first element of a subsequence of elements
00898        *  that matches the given key.  If unsuccessful it returns an iterator
00899        *  pointing to the first element that has a greater value than given key
00900        *  or end() if no such element exists.
00901        */
00902       iterator
00903       lower_bound(const key_type& __x)
00904       { return _M_t.lower_bound(__x); }
00905 
00906 #if __cplusplus > 201103L
00907       template<typename _Kt>
00908         auto
00909         lower_bound(const _Kt& __x)
00910         -> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
00911         { return iterator(_M_t._M_lower_bound_tr(__x)); }
00912 #endif
00913       //@}
00914 
00915       //@{
00916       /**
00917        *  @brief Finds the beginning of a subsequence matching given key.
00918        *  @param  __x  Key of (key, value) pair to be located.
00919        *  @return  Read-only (constant) iterator pointing to first element
00920        *           equal to or greater than key, or end().
00921        *
00922        *  This function returns the first element of a subsequence of
00923        *  elements that matches the given key.  If unsuccessful the
00924        *  iterator will point to the next greatest element or, if no
00925        *  such greater element exists, to end().
00926        */
00927       const_iterator
00928       lower_bound(const key_type& __x) const
00929       { return _M_t.lower_bound(__x); }
00930 
00931 #if __cplusplus > 201103L
00932       template<typename _Kt>
00933         auto
00934         lower_bound(const _Kt& __x) const
00935         -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
00936         { return const_iterator(_M_t._M_lower_bound_tr(__x)); }
00937 #endif
00938       //@}
00939 
00940       //@{
00941       /**
00942        *  @brief Finds the end of a subsequence matching given key.
00943        *  @param  __x  Key of (key, value) pair to be located.
00944        *  @return Iterator pointing to the first element
00945        *          greater than key, or end().
00946        */
00947       iterator
00948       upper_bound(const key_type& __x)
00949       { return _M_t.upper_bound(__x); }
00950 
00951 #if __cplusplus > 201103L
00952       template<typename _Kt>
00953         auto
00954         upper_bound(const _Kt& __x)
00955         -> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
00956         { return iterator(_M_t._M_upper_bound_tr(__x)); }
00957 #endif
00958       //@}
00959 
00960       //@{
00961       /**
00962        *  @brief Finds the end of a subsequence matching given key.
00963        *  @param  __x  Key of (key, value) pair to be located.
00964        *  @return  Read-only (constant) iterator pointing to first iterator
00965        *           greater than key, or end().
00966        */
00967       const_iterator
00968       upper_bound(const key_type& __x) const
00969       { return _M_t.upper_bound(__x); }
00970 
00971 #if __cplusplus > 201103L
00972       template<typename _Kt>
00973         auto
00974         upper_bound(const _Kt& __x) const
00975         -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
00976         { return const_iterator(_M_t._M_upper_bound_tr(__x)); }
00977 #endif
00978       //@}
00979 
00980       //@{
00981       /**
00982        *  @brief Finds a subsequence matching given key.
00983        *  @param  __x  Key of (key, value) pairs to be located.
00984        *  @return  Pair of iterators that possibly points to the subsequence
00985        *           matching given key.
00986        *
00987        *  This function is equivalent to
00988        *  @code
00989        *    std::make_pair(c.lower_bound(val),
00990        *                   c.upper_bound(val))
00991        *  @endcode
00992        *  (but is faster than making the calls separately).
00993        */
00994       std::pair<iterator, iterator>
00995       equal_range(const key_type& __x)
00996       { return _M_t.equal_range(__x); }
00997 
00998 #if __cplusplus > 201103L
00999       template<typename _Kt>
01000         auto
01001         equal_range(const _Kt& __x)
01002         -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
01003         { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
01004 #endif
01005       //@}
01006 
01007       //@{
01008       /**
01009        *  @brief Finds a subsequence matching given key.
01010        *  @param  __x  Key of (key, value) pairs to be located.
01011        *  @return  Pair of read-only (constant) iterators that possibly points
01012        *           to the subsequence matching given key.
01013        *
01014        *  This function is equivalent to
01015        *  @code
01016        *    std::make_pair(c.lower_bound(val),
01017        *                   c.upper_bound(val))
01018        *  @endcode
01019        *  (but is faster than making the calls separately).
01020        */
01021       std::pair<const_iterator, const_iterator>
01022       equal_range(const key_type& __x) const
01023       { return _M_t.equal_range(__x); }
01024 
01025 #if __cplusplus > 201103L
01026       template<typename _Kt>
01027         auto
01028         equal_range(const _Kt& __x) const
01029         -> decltype(pair<const_iterator, const_iterator>(
01030               _M_t._M_equal_range_tr(__x)))
01031         {
01032           return pair<const_iterator, const_iterator>(
01033               _M_t._M_equal_range_tr(__x));
01034         }
01035 #endif
01036       //@}
01037 
01038       template<typename _K1, typename _T1, typename _C1, typename _A1>
01039         friend bool
01040         operator==(const multimap<_K1, _T1, _C1, _A1>&,
01041                    const multimap<_K1, _T1, _C1, _A1>&);
01042 
01043       template<typename _K1, typename _T1, typename _C1, typename _A1>
01044         friend bool
01045         operator<(const multimap<_K1, _T1, _C1, _A1>&,
01046                   const multimap<_K1, _T1, _C1, _A1>&);
01047   };
01048 
01049   /**
01050    *  @brief  Multimap equality comparison.
01051    *  @param  __x  A %multimap.
01052    *  @param  __y  A %multimap of the same type as @a __x.
01053    *  @return  True iff the size and elements of the maps are equal.
01054    *
01055    *  This is an equivalence relation.  It is linear in the size of the
01056    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
01057    *  and if corresponding elements compare equal.
01058   */
01059   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
01060     inline bool
01061     operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
01062                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
01063     { return __x._M_t == __y._M_t; }
01064 
01065   /**
01066    *  @brief  Multimap ordering relation.
01067    *  @param  __x  A %multimap.
01068    *  @param  __y  A %multimap of the same type as @a __x.
01069    *  @return  True iff @a x is lexicographically less than @a y.
01070    *
01071    *  This is a total ordering relation.  It is linear in the size of the
01072    *  multimaps.  The elements must be comparable with @c <.
01073    *
01074    *  See std::lexicographical_compare() for how the determination is made.
01075   */
01076   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
01077     inline bool
01078     operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
01079               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
01080     { return __x._M_t < __y._M_t; }
01081 
01082   /// Based on operator==
01083   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
01084     inline bool
01085     operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
01086                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
01087     { return !(__x == __y); }
01088 
01089   /// Based on operator<
01090   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
01091     inline bool
01092     operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
01093               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
01094     { return __y < __x; }
01095 
01096   /// Based on operator<
01097   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
01098     inline bool
01099     operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
01100                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
01101     { return !(__y < __x); }
01102 
01103   /// Based on operator<
01104   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
01105     inline bool
01106     operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
01107                const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
01108     { return !(__x < __y); }
01109 
01110   /// See std::multimap::swap().
01111   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
01112     inline void
01113     swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
01114          multimap<_Key, _Tp, _Compare, _Alloc>& __y)
01115     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
01116     { __x.swap(__y); }
01117 
01118 _GLIBCXX_END_NAMESPACE_CONTAINER
01119 
01120 #if __cplusplus > 201402L
01121 _GLIBCXX_BEGIN_NAMESPACE_VERSION
01122   // Allow std::multimap access to internals of compatible maps.
01123   template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
01124            typename _Cmp2>
01125     struct
01126     _Rb_tree_merge_helper<_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>,
01127                           _Cmp2>
01128     {
01129     private:
01130       friend class _GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>;
01131 
01132       static auto&
01133       _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
01134       { return __map._M_t; }
01135 
01136       static auto&
01137       _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
01138       { return __map._M_t; }
01139     };
01140 _GLIBCXX_END_NAMESPACE_VERSION
01141 #endif // C++17
01142 
01143 } // namespace std
01144 
01145 #endif /* _STL_MULTIMAP_H */